


Work and Energy

- **Condition for scientifically work to be done**
 - There must be a displacement
 - Displacement of an object must be in the direction of applied force
- **Work done** by a constant force is defined as $W = F \times s$ [Unit – Joule, 1 J = 1 N-m]
- **Work done against gravity** = Weight \times Height = mgh

- **Condition for the Negative Work done**

Force and displacement must be in opposite direction

- **Conditions for no work done**

- No displacement (e.g. a boy pushes the wall)
- Displacement occurs perpendicularly to the applied force(e.g. in case of circular motion, there is no work done by the centripetal force)
- **Energy** : Capacity to do work is called energy.
- There are various form of energy e.g. heat energy, mechanical energy, nuclear energy, light energy etc.
- **Mechanical Energy**: It is caused by the motion or the position and configuration of the object.
- **Kinetic energy**: A body possesses kinetic energy by virtue of its motion.

$$= \frac{1}{2} mv^2$$

- **Proof**

$$v^2 - u^2 = 2as$$

$$s = \frac{v^2 - u^2}{2a}$$

$$W = ma \times \frac{v^2 - u^2}{2a}$$

$$= \frac{1}{2}m(v^2 - u^2)$$

$$= \frac{1}{2}mv^2 [\text{when } u = 0]$$

The kinetic energy of the wind is used in windmills to generate electricity.

Relationship between kinetic energy and momentum

$$\text{K.E.} = \frac{1}{2}pm^2 = \frac{1}{2}mK = mK \text{ (where K = Kinetic energy)}$$

- **Potential energy:** A body possesses potential energy by virtue of its configuration or position.
- **Gravitational potential energy**

$$PE = mgh [h = \text{height of object from the earth surface}]$$

- **Elastic potential energy**

$$U = \frac{1}{2}kx^2 \quad [\text{Where } x = \text{compression or elongation in the spring}]$$

- **Law of conservation of energy**

- The total amount of energy in a system always remains constant.

$$mgh + \frac{1}{2}mv^2 = \text{constant}$$

Power: It is defined as rate of doing work.

$$P = \frac{W}{t} \quad (\text{Unit - Watt, } 1W = \frac{1J}{1s})$$

1Horse Power = 746Watts

For electric appliances,

power = voltage \times current

Energy consumed in time t = Power \times time.

Power is also defined as the product of force and average speed.

$$P=F \times v$$

- The commercial unit of energy is kilowatt-hour (kWh).
 $1\text{kWh} = 3.6 \times 10^6 \text{J}$
- The amount of electrical energy consumed in our house is expressed in terms of 'units', where

$$1 \text{ unit} = 1\text{kWh}$$